Hanwha Q Cells sets 19.5% efficiency record for standard 301W multicrystalline module


Verified by Fraunhofer ISE CalLab, the rating of 19.5% efficiency for a standard module of 1,670 x 1,000 mm2 sets a new world record for multicrystalline panels; Hanwha achieved the result using its Q.ANTUM cells with four busbars.

Korean solar module producer Hanwha Q Cells has raised the bar for multicrystalline module efficiencies, confirming this week that a standard 300-watt prototype has delivered 19.5% conversion efficiency.

The world-record is based on a prototype module made with high-efficiency multicrystalline Q.AMTUM solar cells with four busbars, and was produced at the firm’s Center for Technology Innovation and Quality in Thalheim, Germany.

Despite being a prototype module at this stage, the pilot line replicated the exact production processes required to mass-produce the module. The results were independently verified by Germany’s Fraunhofer ISE CalLab, which confirmed the 19.5% efficiency in relation to the aperture area (of 1,670 x 1,000 mm2) and a power output of 301W using 60 cells.

“The industry has been trying hard to push the efficiency and power of multicrystalline solar cells and modules,” said Hanwha Q Cells’ director of R&D Jörg Müller. “We have been extremely confident that the know-how and experience from inventing, developing and commercializing Q.ANTUM technology would give us the decisive competitive edge. Now we are very proud to be the first PV company to present a 19.5% solar module efficiency based on multicrystalline cells. Up until now, such values were only reached using monocrystalline silicon and complex processing.”

Daniel Jeong, Head of Global R&D at Hanwha Q CELLS added: “Hanwha Q CELLS produces Q.ANTUM-based high efficiency products in large scales in our state of the art international production facilities with a production track record of over 1.5 GW since 2012.” He also added:”The new world-record prototype clearly points the way, as to where Q.ANTUM can bring performance and efficiency of commercial multicrystalline PV modules in the near future.”