Bifacial PV modules are going mainstream but more field data is needed — and NREL is on the case

Getting the most out of a bifacial module requires a rethink at almost every level of system design and the industry is hungry for field data generated by such systems to better inform energy yield modeling and define the best approaches to maximizing yield at minimal cost. NREL’s three-year study into bifacial performance is beginning to yield results.

1

The inner workings of a lithium battery

An international group of scientists has developed a method to track the microscopic processes at work in lithium batteries. Employing a ‘virtual unrolling’ model developed for ancient manuscripts too sensitive to be opened, the group peeked inside the layers of a commercial battery to gain a better understanding of the processes at work and the degradation mechanisms affecting them.

2

Recycling heat for a ‘385% efficient’ solar desalinator

MIT scientists have developed a solar desalinator which sends heat from the sun through a ten-stage process of evaporation and condensation. The group estimates that a $100 device incorporating their innovation could provide the daily drinking water needs of a family.

Solar and the snow

Scientists at Sandia National Laboratories are working to quantify the effects of abundant snowfall on a PV system and identify cost-effective strategies to mitigate energy losses and reliability issues caused by the presence of snow and ice.

2

Perovskite/silicon tandem solar cells approaching 30% efficiency in lab

Scientists at the Helmholtz Zentrum Berlin have taken back the world efficiency record for a perovskite/silicon tandem solar cell, achieving 29.15% with a device measuring 1cm². The record has been confirmed by Fraunhofer ISE, and according to HZB, this means that the 30% efficiency mark is within reach.

Saving water with solar and wind

Scientists at Princeton have found solar and wind energy offer the added environmental benefit of reducing water usage, by comparison with hydroelectric dams. Their findings, say the researchers, could have a positive impact on groundwater sustainability in drought-prone regions such as California, where they conducted a case study.

‘New and strange properties’ provide a boost to energy storage

MIT scientists have developed a class of liquid electrolyte with properties they say could open up new possibilities for improving the performance and stability of lithium batteries and supercapacitors.

Stitching together the grid of the future

A vision of a decentralized, renewable-powered electricity grid is being brought a step closer by scientists at the U.S. National Renewable Energy Laboratory. Their project, Autonomous Energy Grids, aims to take an overarching look at the solutions that will power this grid of the future, and to fill any gaps that appear between them.

1

One atom layer to ‘free the electrons’

Scientists from the University of Kansas say adding a layer of two-dimensional semiconductor molybdenum disulfide can greatly improve the performance of organic solar cells. The research could also inform efforts to engineer the interface between layers in hybrid organic cells.

Someone is building a heterojunction cell factory in North America

Swiss equipment supplier Meyer Burger has signed a contract to supply heterojunction cell manufacturing equipment to an unnamed North American manufacturer.

1

Welcome to pv magazine USA. This site uses cookies. Read our policy.

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close