DuPont Photovoltaic Solutions

September 26, 2018

DuPont 2018 Field Analysis

PV Reliability

T. John Trout Ph.D. Global PV Reliability R&D Manager

DuPont Global Field Reliability Program

Field Program run since 2011 to inspect, assess, gather data and understand the performance and material degradation of fielded PV modules of different ages, having a variety of modules and Bill Of Materials, from different geographies and climates over North America, Europe, Asia Pacific and Middle East

- One of the most comprehensive surveys of module and component degradation
- Multi-step inspection protocol
- Statistical analysis of data by climate, component, material, mounting, age
- Case studies on different materials, module types, mounting, etc.
- Modules selected for extensive post-inspection analytical characterization
- Collaboration with field partners, customers, downstream developers

2018 Global Field Data Analysis Summary

Highlights	2018
North America, Europe, Middle East, Asia/Pacific	
Installations	275
# of panels	4,234,324
# of module makers	92
Average age (years)	3.3
GW	1.047

- Over 1 GW of fields inspected
- Total module defects 22.3%; backsheet defects 9.5%
- Backsheet defects increased by 27%
- Polymer defects: hot > tropical > temperate
- Work highlighted and cited in 2018
 DNVGL PV Module Reliability Scorecard

Defect types

Cell/interconnect: corrosion, hot spot, snail trails, broken interconnect, cracks, burn marks

Backsheet: cracking, delamination, yellowing, inner layer crack

Encapsulant: discoloration, browning, delamination

Others: glass defects, loss of AR coating, junction box

• Actual module defects can be higher due to defects not picked up by inspection protocol (eg. cell cracking evidenced by EL, PID)

Highlights

2018 Analysis vs previous 2017 analysis

- Increases # of fields from 197 to 275
- Increase # panels from 1.9 MM to 4.2 MM (453 MW to 1.04 GW)

Defect Rates

- Module defect rates unchanged from 2017
- Backsheet defects increased 27% from 7.5% to 9.5%

Learnings

- Several significant field failures in 4- 6 years of deployment
- Backsheet defects and failures strongly affected by materials
- UV and Temperature are important factors
- Defects showing up in Glass / Glass modules and systems

Importance of the Data

- One of largest and most comprehensive set global field data and analysis
- Guide accelerated test development
- Used to understand field performance, minimize risk, and module selection

2 Case Studies of Major Backsheet Failures

Inner Layer Cracking of PET Backsheet

- Backsheet inner layer cracked all over modules in spaces between cells and edges
- 30% power loss in 5 years, 6% loss per year
- Similar defects showing up in two continents

Outer Layer Cracking of Polyamide Backsheet

- Global failure estimated at >10 Gw
- 3-4 years service
- Safety issue and power loss due to inverter tripping

Key Learnings

- Unproven materials can increase risk and lead to large failures
- Existing tests were / are not adequate to predict and prevent these failures